Reforming of Diesel Fuel for Transportation Applications J. P. Kopasz, S. Lottes, D-J. Liu, R. Ahluwalia, V. Novick and S. Ahmed Argonne National Laboratory

Applications of diesel fuel reforming

- Produce fuel (H₂-rich gas) for PEM and/or solid oxide fuel cells (SOFCs)
- Reduce NO_x emissions through reformate injection in internal combustion engine (ICE) and/or reformate feed to selective catalytic reduction unit

Challenges in Diesel Reforming

- Extending catalyst lifetime- high temperatures needed for diesel reforming degrade catalysts
- Preventing coking while maintaining high reforming efficiencies

To address these issues we are investigating

- Reactor engineering- to provide better reactant mixing, eliminate hot-spots and provide better temperature distribution
- CFD modeling of reactors
- Reforming chemistry- to determine how diesel fuel formulations, H₂O:C, and O₂:C ratios affect reforming efficiency, coking, and catalyst lifetime
- Work addresses technical barriers J, M and N

Modeling/Reactor engineering

- Modeling and experiments indicate mixing of reactants is critical in avoiding hotspots and cold spots
- Proper mixing helps avoid coke formation by maintaining proper H₂O:C and O₂:C ratios

Developed injector nozzle to provide intimate mixing at reactor-relevant conditions

Developed 3- fluid injector nozzle which produces small droplets $(<10\mu m)$, with low air-side pressure drop which intimately mixes fuel, steam and water prior to catalyst bed

3-fluid nozzle delivers a fine mist of fuel

Reforming Chemistry

Effect of fuel on catalyst temperature

Determined effects of Fuel composition on catalyst temperature and reforming efficiency using pure component tests

Temperatures >850°C lead to rapid catalyst deactivation

Effect of fuel on efficiency

Fuel reforming efficiency to H_2 + CO, ηref $\eta ref = \{ct_{,H2} \triangle Hc_{,H2} + ct_{,CO} \triangle Hc_{,CO} \}/ct_{,fuel} \triangle Hc_{,fuel}$

Ct,i = Molar flow rate of *i* $\triangle Hc$,*i* = Heat of combustion of *i*

Effect of Increasing H₂O:C Ratio

- To avoid coking, many reformers are run at high H₂O:C ratios
- Increasing
 H₂O:C has a
 negative impact
 on conversion
 efficiency

Conclusions/Accomplishments

- Proper delivery and mixing of reactants are needed to obtain high efficiencies and avoid hot spots and areas of low H₂O:C and O₂:C ratios
- Demonstrated operation of liquid fuel injector
- Determined substantial differences in reforming of different diesel fuel constituents
 - Aromatics result in higher maximum reforming temperatures and lower energy conversion efficiencies
 - Di-aromatics are more difficult to reform than mono-aromatics.
 - Increasing H₂O:C ratio reduces coking but decreases overall efficiency

Future Plans

- Determine how fuel composition affects catalyst durability
- Investigate reforming under POX conditions and in low H₂O:C regimes
- Collaborate with NETL (modeling efforts)